Baker＇s Yeast Mediated Reduction of Optically Active Diketone

ZHENG，Guo－Jun（郑国君）GAO，Xiao－Lei（高晓蕾）CHEN，Jin－Chun（陈锦春）
LI，Yu－Lin＊（李裕林）

State Key Laboratory of Applied Organic Chemistry，Institute of Organic Chemistry，Lanzhou University，Lanzhou， Gansu 730000，China

Abstract

Baker＇s yeast mediated reduction of optically active diketone is described．The two keto groups are efficiently dif－ ferentiated and the $e e$ value of the recovered material is considerably raised．It affords highly optically active key intermediates efficiently for the synthesis of natural polyhydroxylated agarofuran products．

Keywords baker＇s yeast，reduction，agarofuran，sesquiterpenoid

Introduction

9－Oxo－10－epi－α－cyperone（1a）is a key intermediate for the synthesis of one kind of natural polyhydroxy－ lated agarofuran sesquiterpenoids．${ }^{1-3}$ To our knowledge， there is no report on the total synthesis of optically ac－ tive polyhydroxylated agarofuran except our group＇s work．${ }^{2,3}$ In order to obtain optically pure natural prod－ ucts，raising $e e$ value of（－）－1a becomes very important． However，the ee value of（－）－1a，afforded by amino acid catalyzed asymmetric reaction under most favor－ able conditions，did not exceed 50% ．Although some substrates of the similar structure could be easily pre－ pared by asymmetric Robinson annulation with a high value of $e e,{ }^{4-6}$ it was impossible to obtain（－）－1a with high value of $e e$ by a similar method．Fortunately，some literatures ${ }^{7,8}$ reported baker＇s yeast mediated reduction to achieve the kinetic resolution of Hajos－ Parrish ketone and Wieland－Miescher ketone with struc－ tures similar to（－）－1a．Therefore，we tried the kinetic resolution of $(-)-\mathbf{1 a}$ by way of baker＇s yeast mediated reduction to improve the $e e$ value，and favorable results were obtained．

Results and discussion

Baker＇s yeast mediated reduction of synthetic sub－ strate is a useful method for preparing chiral intermedi－ ate in synthetic chemistry ${ }^{9,10}$ because it is readily avail－ able and inexpensive．The reduction proceeds in a highly enantiofacially selective manner，following the Prelog rule，${ }^{11}$ that is，a hydride is transferred to the re face of the prochiral ketone to give the corresponding （ S ）－alcohol．${ }^{7,8}$

Our first attempt was to apply（ \pm ）－1a as the sub－ strate for baker＇s yeast（BY）mediated reduction，and $(-)-\mathbf{1 a}\left([\alpha]_{\mathrm{D}}^{29}-21.0, c 1.8, \mathrm{CHCl}_{3}\right)$ was recovered in 64% isolated yield．It was less than 50% enantiomeric
excess and could not meet the needs of synthesis of op－ tically pure aimed compound．In order to get high ee value of $(-)-1 \mathbf{1 a}$ ，we applied BY mediated reduction to （一）－1a（ $50 \% e e,[\alpha]_{D}^{29}-28.0$, c $2.2, \mathrm{CHCl}_{3}$ ），which could be obtained by asymmetric Robinson annulation．${ }^{2}$ According to the general procedure of the reaction，su－ crose was firstly used as culture，but the result of only 57% ee was not ideal．Then glucose was selected in－ stead of sucrose，and the value of $e e$ was raised from 57% to 65%（Entry 1 vs．Entry 2 in Table 1）．When the experimental conditions were further optimized，higher value of $e e$ was gotten．The results are summarized in Table 1.

From Table 1，it can be concluded that higher con－ centrations of substrate and BY are favorable（Entries 2 －4）．Increasing the reaction time properly leads to high value of $e e$ ，but its further extension leads to the forma－ tion of the diol instead of the enhancement of the reac－ tion yield（Entries 1， 4 and 11），while the solvent and addition of non－organic ion almost have no effect on the reaction（Entries 4－7）．The best reaction temperature must be $35{ }^{\circ} \mathrm{C}$（Entries 4， 8 and 9），which is also ob－ served in the reduction of $(-)-\mathbf{1 b}$ ．

By BY mediated reduction，product（ + ）－2a（ $99 \% e e$ ） was obtained in 20% yield along with（－）－1a（ $89 \% e e$ ） in 63% recovered yield．There was a little amount of （－）－3a（ $84 \% e e$ ）produced at the same time（Scheme 1）．

Similarly，when this BY mediated reduction was ap－ plied to compound（－）－1b（ $80 \% e e$ ），which was ob－ tained with $(-)-1 \mathbf{a}$ at the same time，${ }^{2}$ nearly all of the compound $(+) \mathbf{- 1 b}$ and a little $(-) \mathbf{- 1 b}$ were reduced to afford（ + ）－2b（ $99 \% e e$ ）and（－）－3b（ $89 \% e e$ ）in 9% and 3% yields，respectively．Optically pure（ - ）－1b （ 99% ee）was recovered in 78% yield（Scheme 2）． However the experiment processes were somewhat dif－ ferent between（－）－1a and（－）－1b．For（－）－1a，it was

[^0]Table 1 Conditions and results of the baker's yeast mediated reduction

Entry	$\begin{aligned} & \text { Substrate/ } \\ & \left(\mathrm{mmol} \cdot \mathrm{~L}^{-1}\right) \end{aligned}$	$\begin{gathered} \text { BY/ } \\ \left(\mathrm{g} \cdot \mathrm{~L}^{-1}\right) \end{gathered}$	Culture solution	Solvent	Temp. $/{ }^{\circ} \mathrm{C}$	Time/d	$e e / \%$			Yield/\%		
							(-)-1a	(+)-2a	(-)-3a	(-)-1a	(+)-2a	(-)-3a
1	4.3	100	sucrose	EtOH	35	3	57	-	-	88	-	-
2	4.3	100	glucose	EtOH	35	3	65	-	-	87	-	-
3	21.5	100	glucose	EtOH	35	3	74	-	-	85	-	-
4	21.5	500	glucose	EtOH	35	3	89	99	84	63	20	4
5	21.5	500	glucose	DMSO	35	3	85	99	80	64	18	3
6	21.5	500	glucose	Neat	35	3	88	99	83	67	18	4
7	21.5	500	**	EtOH	35	3	88	99	-	60	15	-
8	21.5	500	glucose	EtOH	30	3	88	99	84	66	17	3
9	21.5	500	glucose	EtOH	40	3	87	85	80	75	13	3
10	21.5	500	glucose	EtOH	35	1	75	~100	-	83	12	-
11	21.5	500	glucose	EtOH	35	5	89	83	84	60	22	8

**: 3% glucose, 2% corn starch, $0.1 \% \mathrm{KH}_{2} \mathrm{PO}_{4}, 0.2 \% \mathrm{~K}_{2} \mathrm{HPO}_{4}, 0.2 \% \mathrm{HNO}_{3}, 0.05 \% \mathrm{MgSO}_{4}, 0.02 \% \mathrm{KCl}, 0.02 \% \mathrm{FeSO}_{4}$.

Scheme 1

added after BY had been incubated in phosphate buffer solution for 0.5 h when there came out vigorous bubbles, and the reaction went on desirably. But under the same conditions, when (-)-1a was displaced by (-)-1b, no reaction occured. However, if $(-) \mathbf{- 1 b}$ was added after BY had been incubated in the culture for 24 h , the reaction was found to carry out rather favorably. The absolute configurations of $(+) \mathbf{- 2 a},(-) \mathbf{- 3 a},(+) \mathbf{- 2 b}$ and
(一)-3b can be elucidated by comparison of their spectral data with those of the compounds from reducing $(-)-\mathbf{1 a}$ and (-)-1b by NaBH_{4} (Scheme 2).

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AM-400 spectrometer in CDCl_{3} using TMS as an internal refer-

Scheme 2

ence．Mass spectra were determined on a HP5988A spectrometer by direct inlet at 70 eV ，and signals were given in m / z with relative intensity（\％）in brackets．Op－ tical rotation measurements were carried out on a Perkin－Elmer 141 polarimeter．Flash chromatography was performed on silica gel，with petroleum benzine （PE）and diethyl ether（Et）mixtures as eluent．The pro－ gress of the reactions was monitored by TLC or GC．

The best conditions and steps of BY mediated reduc－ tion of（－）－1a（ $50 \% e e,[\alpha]_{\mathrm{D}}^{29}-28.0, c 1.1, \mathrm{CHCl}_{3}$ ）

To a phosphate buffer solution $(0.1 \mathrm{~mol} / \mathrm{L}, \mathrm{pH}=6.5$ ， 20 mL ）containing glucose（ 3 g ），Baker＇s yeast（ 10 g ） was added and the mixture was kept at room tempera－ ture until vigorous gas evolution ensued（about 30 min ）． Then 9 －oxo－epi－cyperone（－）－1a（ $50 \% e e, 300 \mathrm{mg}$ ）in ethanol（ 2 mL ）was added．The mixture was stirred at $35{ }^{\circ} \mathrm{C}$ with addition of glucose at intervals when the speed of gas evolution slowed down appreciably．After 3 d the mixture was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$ ． The extraction was washed with water（ $3 \times 10 \mathrm{~mL}$ ），so－ dium chloride solution（ $3 \times 10 \mathrm{~mL}$ ）and dried over so－ dium sulphate successively．After evaporation of the solvent under vacuum，the residue was subjected to chromatography on silica gel（ $\mathrm{PE}: \mathrm{Et}=1: 1, V / V$ ）to afford（－）－1a（ $89 \% e e, 189 \mathrm{mg}, 63 \%$ ），（ - ）－3a（ $84 \% e e$ ， $12 \mathrm{mg}, 4 \%)$ and（ + ）－2a（ $99 \% e e, 60 \mathrm{mg}, 20 \%$ ）respec－ tively．Spectral data of（－）－1a $(89 \% e e):[\alpha]_{D}^{29}-48.0$ （ c 2．2， CHCl_{3} ）；${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.46(\mathrm{~s}$ ， $3 \mathrm{H}, 10-\mathrm{Me}$ ），1．80， 1.85 （each s， $3 \mathrm{H}, 11-\mathrm{Me}$ and $4-\mathrm{Me}$ ）， $1.94-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.58$ $(\mathrm{m}, 3 \mathrm{H}), 2.78-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.96(\mathrm{~m}, 2 \mathrm{H}), 4.69$ ， 4.85 （each br s，2H，12－CH2）；MS（EI）m／z（\％）： $232\left(\mathrm{M}^{+}\right.$， 18）， 190 （100）， 175 （23）， 147 （45）， 121 （45）， 93 （71）， 79 （45）， 41 （38）．Spectral data of（＋）－2a（99\％ee）：$[\alpha]_{D}^{25}$ $+94.2\left(c 1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）δ ： 1.16 （s，3H，10－Me）， 1.71 （s，3H，11－Me）， 1.79 （s，3H， $4-\mathrm{Me}), 1.86-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.14$（m，2H），2．30－ $2.36(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.49(\mathrm{~m}, 1 \mathrm{H})$ ， 2.57 （s，br，1H，OH），2．81－2．89（m，1H，7－CH）， 3.50 （dd，$J=11.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}$ ），4．53， 4.74 （each br s， $2 \mathrm{H}, 12-\mathrm{CH}_{2}$ ）；MS（EI） $\mathrm{m} / \mathrm{z}(\%): 234\left(\mathrm{M}^{+}, 25\right), 219(10)$ ， 191 （72）， 178 （19）， 138 （100）， 109 （42）， 93 （40）， 67 （35）． Spectral data of（一）－3a（84\％ee）：$[\alpha]_{\mathrm{D}}^{25}-73.3$（c 1．4， CHCl_{3} ）；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta: 1.21(\mathrm{~s}, 3 \mathrm{H}$ ， $10-\mathrm{Me}), 1.82$（s， $3 \mathrm{H}, 11-\mathrm{Me}$ ）， 1.84 （s， $3 \mathrm{H}, 4-\mathrm{Me}$ ）， $1.86-$ $2.00(\mathrm{~m}, 2 \mathrm{H}), 2.01-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.17(\mathrm{~m}, 2 \mathrm{H})$ ， $2.40-2.44$（m，2H）， 2.46 （s，br， $1 \mathrm{H}, \mathrm{OH}$ ），2．86－2．80 （m，1H，7－CH）， 3.50 （d，J＝4．8 Hz，1H，9－CH），4．83， 4.84 （each br s，2H，12－CH2）；MS（EI）$m / z(\%): 234\left(\mathrm{M}^{+}\right.$， 15）， 219 （6）， 191 （47）， 178 （21）， 138 （100）， 109 （41）， 93 （38）， 67 （32）．

The best conditions and steps of $B Y$ mediated reduc－ tion of（－）－1b（80\％ee，$\left.[\alpha]_{D}^{26}-19.1, c 1.4, \mathrm{CHCl}_{3}\right)$

To 20 mL of culture solution made up of 3% glucose， 2% corn starch， $0.1 \% \mathrm{KH}_{2} \mathrm{PO}_{4}, 0.2 \% \quad \mathrm{~K}_{2} \mathrm{HPO}_{4}, 0.2 \%$ $\mathrm{NaNO}_{3}, 0.05 \% \mathrm{MgSO}_{4}, 0.01 \% \mathrm{KCl}$ and $0.02 \% \mathrm{FeSO}_{4}$ ， Baker＇s yeast（ 10 g ）was added．The mixture was
shaken at $35{ }^{\circ} \mathrm{C}$ for 24 h ，then the value of pH was ad－ justed to $6.5-7.0$ using $6 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$ ．Then（－）－1b $(80 \% ~ e e)(300 \mathrm{mg})$ in ethanol $(2 \mathrm{~mL})$ was added．The mixture was stirred at $35{ }^{\circ} \mathrm{C}$ with addition of glucose at intervals to ensure the mixture bubbling all the time． After 3 d，the mixture was extracted with EtOAc（ $3 \times$ 100 mL ）．The extraction was washed with water（ 3×10 mL ），sodium chloride solution（ $3 \times 10 \mathrm{~mL}$ ）and dried over sodium sulphate successively．After evaporation of the solvent under vacuum，the residue was subjected to chromatography on silica gel（ $\mathrm{PE}: \mathrm{Et}=1: 1, V / V$ ）to afford（－）－1b（99\％ee， $234 \mathrm{mg}, 78 \%$ ），（＋）－2b（99\％ee， $27 \mathrm{mg}, 9 \%)$ and（－）－3b（ $89 \% e e, 9 \mathrm{mg}, 3 \%$ ）respec－ tively．Spectral data of（一）－1b $(99 \% e e):[\alpha]_{\mathrm{D}}^{26}$ -26.1 （ с 1．4， CHCl_{3} ）；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）δ ： 1.43 （s， $3 \mathrm{H}, 10-\mathrm{Me}$ ），1．80， 1.84 （each s， $3 \mathrm{H}, 11-\mathrm{Me}$ and $4-\mathrm{Me}), 2.04-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.55-$ $2.64(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.73(\mathrm{~m}, 1 \mathrm{H})$ ， $2.97-3.01(\mathrm{~m}, 1 \mathrm{H}), 4.87,4.85$（each br s， $2 \mathrm{H}, 12-\mathrm{CH}_{2}$ ）； MS（EI）m / z（\％）： $232\left(\mathrm{M}^{+}, 20\right), 190$（100）， 179 （25）， 147 （29）， 121 （36）， 93 （55）， 79 （35）， 41 （74）．Spectral data of $(+)-2 \mathbf{b}(99 \% e e):[\alpha]_{\mathrm{D}}^{25}+67.2\left(c 1.4, \mathrm{CHCl}_{3}\right)$ ； ${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta: 1.16$（s，3H，10－Me）， $1.68-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{Me}), 1.76(\mathrm{~s}, 3 \mathrm{H}$ ， $4-\mathrm{Me}), 1.79-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.01-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.08-$ $2.16(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.38-2.43(\mathrm{~m}, 2 \mathrm{H})$ ， $2.64-2.67$（m，1H， $7-\mathrm{CH}$ ）， 3.34 （dd，$J=11.6,4.3 \mathrm{~Hz}$ ， $1 \mathrm{H}, 9-\mathrm{CH}), 4.74\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, 12-\mathrm{CH}_{2}\right)$ ；MS（EI） $\mathrm{m} / \mathrm{z}(\%)$ ： $234\left(\mathrm{M}^{+}, 45\right), 219$（4）， 191 （43）， 178 （10）， 138 （59）， 109 （38）， 93 （32）， 77 （46）， 67 （37）， 41 （100）．Spectral data of （一）－3b（89\％ee）：$[\alpha]_{\mathrm{D}}^{25}-57.4$（c 1．2， CHCl_{3} ）；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta: 1.23$（s， $3 \mathrm{H}, 10-\mathrm{Me}$ ）， $1.44-$ $1.52(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{Me}), 1.81(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me})$ ， $1.87-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.97-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}$ ， $\mathrm{OH}), 2.51-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.79(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{CH})$ ， 3.69 （t，$J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}$ ）， 4.82 （s， $2 \mathrm{H}, 12-\mathrm{CH}_{2}$ ）； MS（EI）$m / z(\%): 234\left(\mathrm{M}^{+}, 52\right), 219$（4）， 191 （48）， 178 （11）， 138 （67）， 109 （45）， 93 （38）， 77 （50）， 67 （39）， 41 （100）．

References

1 Huffman，J．W．；Hillenbrand，J．F．Tetrahedron 1981， 37（suppl．）， 269.
2 Zhou，G．；Gao，X．L．；Li，W．D．；Li，Y．L．Tetrahedron Lett． 2001，42， 3101.
3 Li，W．D．；Zhou，G．；Gao，X．L．；Li，Y．L．Tetrahedron Lett． 2001，42， 4649.
4 Hajos，Z．H．；Parrish，D．R．Org．Synth．Coll．1990，7， 363.
5 Hagiwara，H．；Uda，H．J．Org．Chem．1988，53， 2308.
6 Tamai，Y．；Mizutani，Y．；Uda，H．；Harada，N．J．Chem．Soc．， Chem．Commun．1983， 114.
7 Hioki，H．；Hashimoto，T．；Kodama，M．Tetrahedron：Asym－ metry 2000，11， 829.
8 Fuhshuku，K．；Funa，N．；Akeboshi，T．J．Org．Chem．2000， 65， 129.
9 Csuk，R．；Glanzer，B．I．Chem．Rev．1991，91， 49.
10 Servi，S．Synthesis 1990， 1.
11 Prelog，V．Pure Appl．Chem．1964，9， 119.

[^0]: ＊E－mail：liyl＠lzu．edu．cn
 Received March 11，2003；revised and accepted September 9， 2003. Project supported by the National Natural Science Foundation of China（No．20272021）．

